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Communications 
Formation of Manganese(1V)-Oxo-Porphyrin Derivatives Scheme I 

CMn1’(O2)Por1- 
111 by Decomposition of Peroxycarbonate Complexes COz, THF-DMF 

-70 *C 
- CMn (O-O-CO~)Porl-  

Sir: 1 2 

We have shown recently that carbon dioxide reacts in tetra- 
hydrofuran (THF) a t  -70 OC with peroxo-iron(II1)-porphyrin 
derivatives to yield THF adducts of iron(IV)-oxo-porphyrins.’ 
The [FeIv(=0)] stretching vibration of the THF and 1- 
methylimidazole ( 1MeIm) adducts of [Felv(=O)TP~,P] (TPfivP 
= meso-tetrakis( a-pivalamidopheny1)porphyrin dianion) obtained 
by this carbon dioxide reaction have been located respectively at 
829 and 807 cm-’ by resonance Raman spectroscopy.2 In the 
course of our research on the formation of the corresponding 
manganese(IV)-oxo-porphyrin species we examined the reaction 
of carbon dioxide with manganese(I1)-superoxo complexes, 
[Mn(02)(porphyrin)]-.3q4 It was shown recently that these su- 
peroxo derivatives react with acyl chlorides and acid anhydrides 
to form manganese( 111)-acylperoxo intermediates that undergo 
at  room temperature 0-0 bond heterolysis to yield manganese- 
(V)-OXO  derivative^.^-^ In this paper, we show that the manga- 
nese(II1)-peroxycarbonate intermediates formed by the carbon 
dioxide reaction with manganese(I1)superoxo complexes undergo 
either 0-0 bond homolysis into manganese(1V)-oxo species or 
0-0 bond heterolysis into manganese(V)-oxo porphyrin species 
depending on the solvent or the porphyrin used. 

Reaction in THF or toluene of manganese(I1) porphyrins, 
[Mn1IPorI7 (Por = tetraphenylporphyrin (TPP), tetrakis(penta- 
fluoropheny1)porphyrin (TPFPP) and “picket fence” porphyrin 
(TP P) dianions) with 1 equiv of potassium superoxide in di- 
mettilformamide (DMF) or THF containing 18-crown-6 pro- 
duced a t  room temperature the corresponding manganese(I1)- 
superoxo derivatives [ Mn11(02)Por]- ( l).394 These complexes 1 
react a t  -70 OC with carbon dioxide to afford the corresponding 
manganese(II1)-peroxycarbonate intermediates [Mn”’- 
(02C02)Por]- (2) (Scheme I). Identification of 2 as a manga- 
nese(II1)-peroxycarbonate species is based on the following ob- 
servations: the visible spectra of these compounds are typical for 
manganese(II1) species8 (for 2(TP,,,P) in THF or toluene A,,, 
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= 370, 400, 464, 525, 580, 615 nm), and these spectra are very 
similar to the spectrum of the manganese( 111)-acylperoxo de- 
rivative obtained by Groves et al.’ Moreover, warming the toluene 
solutions of 2(TPP) to -35 OC caused the smooth decomposition 
of this intermediate to a complex having spectral properties 
identical with those reported for manganese(V)-oxo-porphyrin 
 derivative^^^^-^-'* (A, = 422, 520 nm; Figure la). In contrast, 
in THF the manganese(II1)-peroxycarbonate intermediates 2 
decompose rapidly at  -70 OC with formation of the new species 
3, whose visible spectra present a strong Soret band and a unique 
band in the a-/3 region (Amx = 426,543 nm (3(TPP)); 419, 538 
nm (3(TPFPP)); 436, 552 nm (3(TPPi,P))). Direct reaction at  
-70 OC of chloro-manganese(II1) derivatives in THF with po- 
tassium peroxycarbonate prepared in D M F  also produced 3 
(Figure 1 b). Identification of 3 as manganese(IV)-oxo-porphyrin 
derivativesI2 is based on the following  observation^:'^ (a) 3 reacts 
with triphenylphosphine in the presence of pyridine to produce 
triphenylphosphine oxide and the pyridine adducts of the corre- 
sponding manganese(I1) porphyrins;’ (b) addition of an excess 
of methyl alcohol (MeOH) produced the corresponding dimeth- 
oxy-manganese(1V) species;14 (c) oxidation of 3 with bromine 
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Figure 2. EPR spectrum of [MnIV(= O)(TPFPP)] (J(TPFPP), 10 
mmol) in frozen THF-DMF solution ( t  = -160 O C ;  Y = 9.497 MHz). 

react also with (trimethylsily1)imidazole to yield probably the 
manganese(IV)-diimidazolate complexes 620 (6(TPflvP) A,,, = 
420, 522 nm). Furthermore, 3(TPFPP) reacts with cyclohexene 
to give a manganese(I1) species and a mixture of cyclohexene oxide 
(relative yield 40%), cyclohexen-l-o1(30%), and cyclohexen-1-one 
(30%), identified by GLC. 
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Figure 1. (a) Changes in the electronic spectrum of [Mn(02C02)TPP]- 
(Z(TPP)) in toluene resulting from an increase in temperature from -70 
to -35 OC. (b) Changes in the electronic spectrum of [Mn"ICl(TPP)] 
upon reaction in T H F  at -70 O C  with potassium peroxycarbonate pre- 
pared in DMF. 

or phenoxathiine hexachloroantimonate led to species having 
spectral properties that are indentical with (TPP) or similar to 
(TPFPP, TP~,P)  those reported for manganese(V)-oxo-porphyrin 

(d) the X-band EPR spectra of these species, run at 
-150 'C in frozen DMF-THF solution present a strong signal 
a t  g N 2 (3(TPP), 2.050; 3(TPFPP), 2.056 (Figure 2); 3(TP@vP), 
2.048) and a weaker signal at g 4.4 (3(TPP), 4.331; 3(TPFPP), 
4.407 (Figure 2); 3(TPpivP), 4.390). It is known that the nature 
and complexity of frozen-solution d3 ion EPR spectra depend on 
the zero-field splitting parameters. When the axial parameter 
D is small ( 2 0  << 0.31 cm-I), the dominating signal lies a t  g N 

2 attended by one or more broad and weak signals a t  low fields 
(1000-1500 G).1s,16 The spectra observed for 3 present these 
characteristics. Thus, they are consistent with the presence of 
high-spin S = 3 / 2  manganese(1V)" porphyrin derivatives. The 
spectra of different samples of 3(TPFPP) presented several times 
an additional weak signal a t  g = 6.20 that showed at  20 K a 
well-resolved 55Mn six-line hyperfine structure with A = 85 G. 
This high-field signal is probably not due to an S = 3 / 2  manga- 
nese(1V) systemt7Js and corresponds most probably to a small 
amount of a decomposition product that has, so far, not been 
identified. 

Morever, solutions of 3 react instantaneously in T H F  at -70 
"C with trimethylsilyl azide to yield the corresponding manga- 
nese(1V)Aiazide species 419 (4(TPp+,P) A,,,= = 422, 523 nm) and 
with trimethylsilylisocyanate to form the manganese(1V) diiso- 
cyanate  derivative^'^ 5 (5(TP,,,P) A,,, = 421, 525 nm). They 
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Synthesis, Structure, and Superconductivity of Single 
Crystals of High- T ,  La1.85Sro.15Cu04 

Sir: 

Record high onset superconducting transition temperatures (T,) 
of -30-36 K (at ambient pressure),14 and -40.25a to 52.5 KSb 
(at pressures to - 12 kbar), have very recently been reported for 
the La-Ba-Cu-O (LBCO) system. Superconducting 7':s as high 
as 70 K have been reported in some metastable LBCO  sample^.^ 
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